A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

نویسندگان

  • X Cao
  • J Q You
  • H Zheng
  • F Nori
چکیده

We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit–cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit–cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit–cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the 6 Author to whom any correspondence should be addressed. New Journal of Physics 13 (2011) 073002 1367-2630/11/073002+21$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft 2 anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit–cavity coupling and the type of intrinsic noise experienced by the qubit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation

We consider a simple model of a Josephson junction phase qubit coupled to a solid-state nanoelectromechanical resonator. This and many related qubit-resonator models are analogous to an atom in an electromagnetic cavity. When the systems are weakly coupled and nearly resonant, the dynamics is accurately described by the rotating-wave approximation (RWA) or the Jaynes-Cummings model of quantum o...

متن کامل

Theory of Weak Continuous Measurements in a Strongly Driven Quantum Bit. Typeset Using Revt E X 1

Continuous spectroscopic measurements of a strongly driven superconduct-ing qubit by means of a high-quality tank circuit (a linear detector) are under study. Output functions of the detector, namely, a spectrum of voltage fluctuations and an impedance, are expressed in terms of the qubit spectrum and magnetic susceptibility. The nonequilibrium spectrum of the current fluctuations in the qubit ...

متن کامل

Spontaneous Emission Spectrum from a Driven Three-Level Atom in a Double-Band Photonic Crystal

Abstract The spontaneous emission spectrum from a driven three-level atom placed inside a double-band photonic crystal has been investigated. We use the model which assumes the upper levels of the atomic transition are coupled via a classical driving field. The transition from one of the upper levels to lower level couples to the modes of the modified reservoir, and the transition from the oth...

متن کامل

Super operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir

In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...

متن کامل

Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation

We generalize the dispersive theory of the Jaynes-Cummings model beyond the frequently employed rotating-wave approximation RWA in the coupling between the two-level system and the resonator. For a detuning sufficiently larger than the qubit-oscillator coupling, we diagonalize the non-RWA Hamiltonian and discuss the differences to the known RWA results. Our results extend the regime in which di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011